
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 28 November 2022
Markus Püschel, David Steurer
François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Exercise sheet 10 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 5 December 2022.

Exercises that are marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 10.1 Depth-First Search (1 point).

Execute a depth-�rst search (Tiefensuche) on the following graph starting from vertex A. Use the algo-
rithm presented in the lecture. When processing the neighbors of a vertex, process them in alphabetical
order.

AB

ED F

C G H

T

F
F

T
F

T

T
T

B T

C

(a) Mark the edges that belong to the depth-�rst tree (Tiefensuchbaum) with a “T” (for tree edge).

(b) For each vertex in the depth-�rst tree, give its pre- and post-number.

Solution:

A(1,14) B(2,13) C(4,11) D(3,12) E(6,7) F(5,8) G(9,10).

(c) Give the vertex ordering that results from sorting the vertices by pre-number. Give the vertex
ordering that results from sorting the vertices by post-number.

Solution:

Pre-ordering: A, B, D, C, F, E, G.

Post-ordering: E, F, G, C, D, B, A.

(d) Mark every forward edge (Vorwärtskante) with an “F”, every backward edge (Rückwärtskante) with
an “B”, and every cross edge (�erkante) with a “C”.

(e) Does the above graph have a topological ordering? How can we use the above execution of depth-
�rst search to �nd a directed cycle?

Solution:

�e decreasing order of the post-numbers gives a topological ordering whenever the graph is
acyclic. �is is the case if and only if there are no back edges. If there is a back edge, then to-
gether with the tree edges between its end points it forms a directed cycle. In our graph, the only
back edge is E→ D, and the tree edges from D to E are D→ C, C→ F, and F→ E. Together they
form the directed cycle (D→ C→ F→ E→ D).

(f) Draw a scale from 1 to 16, and mark for every vertex v the interval Iv from pre-number to post-
number of v. What does it mean if Iu ⊂ Iv for two di�erent vertices u and v?

Solution:

1 14A

2 13B

3 12D

4 11C

5 8F

6 7E

9 10G

If Iu ⊂ Iv for two di�erent vertices u and v, then u is visited during the call of DFS-Visit(v).

(g) Consider the graph above where the edge from E to D is removed and an edge from A to H is
added. How does the execution of depth-�rst search change? Which topological sorting does the
depth-�rst search give? If you sort the vertices by pre-number, does this give a topological sorting?

Solution:

�e execution of depth-�rst search only changes in the last step, where H is visited (from A).

�e topological sorting (reversed post-ordering) is: A, H, B, D, C, G, F, E.

�e pre-ordering is A, B, D, C, F, E, G, H; it does not give a topological ordering, since there is an
edge (G, F) in the graph.

Exercise 10.2 Longest path in DAGs (1 point).

Given a directed graph G = (V,E) without directed cycles (i.e., a DAG), the goal is to �nd the number
of edges on the longest path in G.

Describe a dynamic-programming algorithm that, given G, returns the length of the longest path in G
in O(|V | + |E|) time. You can assume that V = {1, 2, . . . , n}, and that the graph is provided to you
as a pair (n,Adj) of an integer n = |V | and an adjacency list Adj. Your algorithm can access Adj[u],
which is a list of vertices to which u has a direct edge, in constant time. Formally, Adj[u] := {v ∈ V |
(u, v) ∈ E}.

2

Example: n = 5 1 2

3

4

5

Output: 3

(the path is highlighted in red.)

In your solution, address the following aspects:

1. Dimensions of the DP table: What are the dimensions of the DP table?

2. De�nition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry have
been determined in previous steps?

5. Extracting the solution: How can the solution be extracted once the table has been �lled?

6. Running time: What is the running time of your solution?

Solution:

For convenience, in the solution we will use the standard notation n := |V |,m := |E|.

1. Dimensions of the DP table: DP [1 . . . n], one for each node.

2. De�nition of the DP table: DP [u] is the length of the longest path starting at u.

3. Computation of an entry: If u has no outgoing neighbor, we set DP [u] = 0. Otherwise, DP [u] =
maxv∈Adj[u] (1 + DP [v]).

4. Calculation order: We compute the entries in reverse topological order (i.e., the �rst node is one with
no outgoing edges and the last is one with no incoming edges). Remark. �is is the crucial part
that di�erentiates this dynamic program from all prior ones.

5. Extracting the solution: We return maxu∈V DP [u].

6. Running time: We compute the entry for each node, contributing O(n) to the runtime. Furthermore,
each node u processes all outgoing edges from v, but every edge gets processed only once. Hence,
this contributes O(|E|) to the runtime. In total, we get O(|V |+ |E|).

Exercise 10.3 Subtree sum (1 point).

De�nition 1. Given a directed graph ~G = (V, ~E) we de�ne its undirected version as
←→
G = (V,

←→
E)

with each directed edge u → v being transformed to an undirected u ↔ v. Formally,
←→
E := ({u, v} |

(u, v) ∈ ~E}.

De�nition 2. A directed graph G = (V,E) is a tree rooted at r ∈ V if G’s undirected version
←→
G is

an undirected tree (see Exercise 9.5 for a de�nition) and every node is reachable from r via a directed
path.

3

Write the pseudocode of an algorithm that, given a rooted tree G = (V,E), computes, for each vertex
v, the total number of vertices that are reachable from v (via directed paths). �e algorithm should have
a runtime of O(|V |+ |E|). You an assume V = {1, 2, . . . , n}. �e graph will be given to the algorithm
as access to n, the root r ∈ V , and an adjacency list. Namely, the algorithm can access Adj[u], which
is a list of vertices to which u has a direct edge. Formally, Adj[u] := {v ∈ V | (u, v) ∈ E}.

Explain in a few sentences why your algorithm achieves the desired runtime.

Hint: If needed, you can use the fact that “inG, there is a unique path from the root to each vertex” without
proof.

Example:
n = 6
r = 3

3

1

6 4

5 2

Output: [3, 1, 6, 1, 1, 1].

Solution:

Algorithm 1
1: Input: integers n, r. Adjacency list Adj[1 . . . n].
2:
3: Let reachable[1 . . . n] be a global variable, initialized to 0.
4:
5: function walk(u) . Calculate the number of reachable vertices from u.
6: for each v in Adj[u] do . Iterate over all children v.
7: walk(v)
8: reachable[u]← reachable[u] + reachable[v]

9: reachable[u]← reachable[u] + 1 . u can reach itself.
10:
11: walk(r) . Start walking from the root.
12: Print(reachable)

�ere is a unique path from the root to each vertex (easy to prove). �erefore, the function will be called
on each vertex at most once (contributingO(|V |)). Each vertex processes all outgoing edges, hence each
edge will be processed at most once (contributing O(|E|)). In total, we get runtime O(|V |+ |E|).

Exercise 10.4 Data structures for graphs.

Consider three types of data structures for storing a graph G with n vertices and m edges:

a) Adjacency matrix.

b) Adjacency lists:

4

1

1

1

1

1

2

2

2

2

3

3

4

4

4

45

5

5

6

6

c) Adjacency lists, and additionally we store the degree of each node, and there are pointers between
the two occurences of each edge. (An edge appears in the adjacency list of each endpoint).
1

1

1

1

1

2

2

2

2

3

3

4

5

5

5

4

4

4

6

6

deg: 4

deg: 3

deg: 1

deg: 3

deg: 2

deg: 1

For each of the above data structures, what is the required memory (in Θ-Notation)?

Solution:

Θ(n2) for adjacency matrix, Θ(n + m) for adjacency list and improved adjacency list.

Which runtime (worst case, in Θ-Notation) do we have for the following queries? Give your answer
depending on n, m, and/or deg(u) and deg(v) (if applicable).

(a) Input: A vertex v ∈ V . Find deg(v).

Solution:

Θ(n) in adjacency matrix, Θ(1 + deg(v)) in adjacency list, Θ(1) in improved adjacency list.

(b) Input: A vertex v ∈ V . Find a neighbour of v (if a neighbour exists).

Solution:

Θ(n) in adjacency matrix, Θ(1) in adjacency list and in improved adjacency list.

(c) Input: Two vertices u, v ∈ V . Decide whether u and v are adjacent.

Solution:

Θ(1) in adjacency matrix, Θ(1+min{deg(v),deg(u)}) in adjacency list and in improved adjacency
list.

(d) Input: Two adjacent vertices u, v ∈ V . Delete the edge e = {u, v} from the graph.

Solution:

Θ(1) in adjacency matrix, Θ(deg(v) + deg(u)) in adjacency list and Θ(min{deg(v),deg(u)}) in
improved adjacency list.

(e) Input: A vertex u ∈ V . Find a neighbor v ∈ V of u and delete the edge {u, v} from the graph.

Solution:

5

Θ(n) in the adjacency matrix (Θ(n) for �nding a neighbor and Θ(1) for the edge deletion).

Θ(1+ max
w:{u,w}∈E

deg(w)) for the adjacency list (Θ(1) for �nding a neighbor and Θ(max
w:{u,w}∈E

deg(w))

for the edge deletion).

Θ(1) for the improved adjacency list (Θ(1) for �nding a neighbor and Θ(1) for the edge deletion).

(f) Input: Two vertices u, v ∈ V with u 6= v. Insert an edge {u, v} into the graph if it does not exist
yet. Otherwise do nothing.

Solution:

Θ(1) in adjacency matrix, Θ(1+min{deg(v),deg(u)}) in adjacency list and in improved adjacency
list.

(g) Input: A vertex v ∈ V . Delete v and all incident edges from the graph.

Solution:

Θ(n2) in adjacency matrix, Θ(n + m) in adjacency list and Θ(n) in improved adjacency list.

For the last two queries, describe your algorithm.

Solution:

�ery (vi): We check whether the edge {u, v} does not exist. In adjacency matrix this information
is directly stored in the u-v-entry. For adjacency lists we iterate over the neighbours of u and the
neighbours of v in parallel and stop either when one of the lists is traversed or when we �nd v among
the neighbours of u or when we �nd u among the neighbours of v. If we didn’t �nd this edge, we add
it: in the adjacency matrix we just �ll two entries with ones, in the adjacency lists we add nodes to two
lists that correspond to u and v. In the improved adjacency lists, we also need to set pointers between
those two nodes, and we need to increase the degree for u and v by one.

�ery (vii): In the adjacency matrix we copy the complete matrix, but leave out the row and column
that correspond to v. �is takes time Θ(n2). �ere is an alternative solution if we are allowed to rename
vertices: In this case we can just rename the vertex n as v, and copy the n-th row and column into the
v-th row and column. �en the (n− 1)× (n− 1) submatrix of the �rst n− 1 rows and columns will be
the new adjacancy matrix. �en the runtime is Θ(n). Whether it is allowed to rename vertices depends
on the context. For example, this is not possible if other programs use the same graph.

In the adjacency lists we remove v from every list of neighbours of every vertex (it takes time Θ(n+m))
and then we remove a list that corresponds to v from the array of lists (it takes time Θ(n)). In the im-
proved adjacency lists we iterate over the neighbours of v and for every neighbour u we remove v from
the list of neighbours of u (notice that for each u we can do it in Θ(1) since we have a pointer between
two occurences of {u, v}) and decrease deg(u) by one. �en we remove the list that corresponds to v
from the array of lists (it takes time Θ(n)).

Exercise 10.5 Maze solver.

You are given a maze that is described by a n × n grid of blocked and unblocked cells (see Figure �).
�ere is one start cell marked with ’S’ and one target cell marked with ’T’. Starting from the start cell
your algorithm may traverse the maze by moving from unblocked �elds to adjacent unblocked �elds.
�e goal of this exercise is to devise an algorithm that given a maze returns the best solution (traversal
from ’S’ to ’T’) of the maze. �e best solution is the one that requires the least moves between adjacent
�elds.

6

Hint: You may assume that there always exists at least one unblocked path from ’S’ to ’T’ in a maze.

s

Figure 1: An example of 7 × 7 maze in which purple �elds are blocked, white �elds can be traversed
(are unblocked). �e start �eld is marked with ’S’ and the target �eld with a ’T’.

(a) Model the problem as a graph problem. Describe the set of vertices V and the set of edges E in
words. Reformulate the problem description as a graph problem on the resulting graph.

Solution:

V is the set of unblocked �elds, and there is an edge between vi and vj if and only if vi and vj
are adjacent unblocked �elds. �e corresponding graph problem is to �nd a shortest path between
vertices ‘S’ and ‘T’ in G = (V,E).

(b) Choose a data structure to represent your maze-graphs and use an algorithm discussed in the lecture
to solve the problem.

Solution:

�e data structure is adjacency list, the algorithm is BFS starting from ‘S’. Once we know all the
distances from ‘S’, we append vertices to a sequence starting from ‘T’ using the following rule: if the
last appended vertex is v, we append some neighbour u of v such that dG(‘S’, v) = dG(‘S’, u) + 1.
We stop a�er appending ‘S’. �en we return a reverse sequence.

Hint: If there are multiple solutions of the same quality, return any one of them.

(c) Determine the running time and memory requirements of your algorithm in terms of n in Θ nota-
tion.

Solution:

Adjacency list requires Θ(|V |+ |E|) memory, where V is a number of vertices and |E| is a number
of edges in the graph. BFS requires Θ(|V | + |E|) time and appending procedure also requires
Θ(|V |+ |E|) time, so the total running time is Θ(|V |+ |E|). Since each vertex has degree at most
4, |E| = O(|V |), so the running time and memory are Θ(|V |) which is Θ(n2) in the worst case.

7

